2025年成考高起点每日一练《数学(理)》5月3日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知,则cotθ的值是()。
- A:
- B:
- C:
- D:
答 案:C
解 析:从已知式两边平方得到,
2、()。
- A:2
- B:4
- C:
- D:
答 案:B
3、i为虚数单位,则的值为()。
- A:1
- B:-1
- C:i
- D:-i
答 案:D
解 析:
4、展开式中x3的系数是()。
- A:-21
- B:21
- C:-30
- D:30
答 案:B
解 析:
主观题
1、化简: (1)
(2)
答 案:(1) (2)
2、求下列函数的最大值、最小值和最小正周期: (1)(2)y=6cosx+8sinx
答 案:
3、(1)已知tanα=,求cot2α的值; (2)已知tan2α=1,求tanα的值。
答 案:(1)(2)由已知,得
解关于tanα的一元二次方程,得tanα=
4、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽
答 案:如图,
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=
=60m,
即河宽为60m
填空题
1、ABCD是正方形,E是AB的中点,如将△DAE和△CBE分别沿虚线DE、CE折起,使AE与BE重合如图
,设A与B重合后的点为P,则面PCD与面ECD所成的二面角为______度,PE与面ECD成______度。
答 案:二面角为30°,PE与面ECS成60角°
解 析:(1)求面PCD与面ECD所成的二面角为多少度,就是要求出由平面PCD与平面ECD所组成的二面角的平面角,其中画出二面角的平面角是关键,因为二面角确定以后,二面角的平面角很容易画出(由二面角的平面角的定义)。求角度时,常用到勾股定理、正弦定理、余弦定理、兰垂线定理和逆定理。 (2)求PE与面ECD成多少度,就是求直线与平面所成的角是多少度。首先要找出平面的一条斜线(直线PE)和斜线的射影,斜线和射影所成的锐角,就是直线PE和平面ECD所成的角,再求出角度。 设CD的中点为F,练PF,EF
∵PC=PD,EC=ED.
∴PF⊥CD,EF⊥CD(三垂线定理)
∠PFE是二面角P-CD-E的平面角
∵PE⊥PC,PE⊥CD.
∴PE⊥平面PCD,又PF在平面PCD内
∴PE⊥PF
设正方形边长为1(如图)
故面PCD与面ECD所成的二面角为30°,PE与面ECS成60角°。
2、一个问题在1小时内,甲能独立解决的概率是0.5,乙能独立解决的概率是0.4,两人在1小时内解决问题的概率是______。
答 案:0.7
解 析:设事件A为两人在1小时内解决问题,即1小时内至少有一人能解决问题,事件B为甲在1小时内解决问题,事件C为乙在1小时内解决问题,事件B、C是相互独立事件,事件A的对立事件
互为在1小时内两个人都没有解决问题,所以 P(A)=1-P(
)=1-P(
·
)=1-P(
)·P(
)
=1-(1-0.5)×(1-0.4)=1-(0.5×0.6)=1-0.3=0.7
精彩评论