2025年成考高起点每日一练《数学(理)》4月30日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、曲线y=x3+2x-1在点M(1,2)处的切线方程是()。
- A:5x-y-3=0
- B:x-5y-3=0
- C:5x+y-3=0
- D:x+5y-3=0
答 案:A
解 析:由于y’=3x+2,所以曲线y=x3+2x-1在点 M(1,2)处的切线的斜率是y’|x-1=5.所求曲线的切线方程是y-2=5(x-1),即5x-y-3=0.(答案为A)
2、设全集U={0,1,2,3,4},集合M={0,1,2,3,},N={2,3,4},则CuM∩CuN=()。
- A:{2,3)
- B:{0,1,4}
- C:φ
- D:U
答 案:C
解 析:CuM={4},CuN={0,1}.{4}∩{0,1}=∅
3、函数的定义域为()。
- A:{x|x>1}
- B:{x|x≤2}
- C:{x|1
- D:{x|1
- D:{x|1
答 案:D
4、双曲线的渐近线方程为则该双曲线的离心率为()。
- A:
- B:2
- C:
- D:
答 案:C
解 析:
主观题
1、已知lg2=a,lg3=b,求lg0.15关于a,b的表达式。
答 案:
2、已知数列{an}中,a1=2,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}前5项的和 S5
答 案:解:
3、计算。
答 案:
4、某气象预报站天气预报的准确率为80%,计算(1)5次预报中恰有4次准确的概率; (2)5次中至少有次准确的概率.(计算结果保留两个有效数字).
答 案: 把每次预报看做一次试验,“预报结果准确”看成事件P(A)=0.8,本题就相当于在5次独立重复试验中求A恰好发生4次(或至少4次)的概率,此题属于独立重复试验,由公式来求解。 (1)n=5;p=0.8;k=4
即恰有4次准确的概率为0.41.
(2)5次至少有4次准确的概率,就是5次中恰有4次准确的概率与5次预报中都准确的概率的和,即
即至少有4次准确的概率为0.74。
填空题
1、已知sin2θ+1=cos2θ,则的值等于______。
答 案:
解 析:由已知,cos2θ-sin2θ=1,即cos2θ-(1-cos2θ)=1,cos2θ=1,所以cosθ=±1。 而当cosθ=±1时,sinθ=0。
2、一个问题在1小时内,甲能独立解决的概率是0.5,乙能独立解决的概率是0.4,两人在1小时内解决问题的概率是______。
答 案:0.7
解 析:设事件A为两人在1小时内解决问题,即1小时内至少有一人能解决问题,事件B为甲在1小时内解决问题,事件C为乙在1小时内解决问题,事件B、C是相互独立事件,事件A的对立事件
互为在1小时内两个人都没有解决问题,所以 P(A)=1-P(
)=1-P(
·
)=1-P(
)·P(
)
=1-(1-0.5)×(1-0.4)=1-(0.5×0.6)=1-0.3=0.7
精彩评论